Technical datasheet allPHA

Date of issue: Version:

April 4, 2022 v1.0

Our allPHA 3D printing filament (pronounced as Alpha) is the ultimate bioplastic. **P**oly**H**ydroxy**A**lkanoates abbreviated PHA, is created by a naturally occurring process called fermentation. By feeding bacteria natural sugars and oils, the bacteria create "fat" cells (the PHA). The best thing about PHA? Micro-organisms can eat it again at the end of the products' lifetime.

AllPHA is 100% biobased and 100% biodegradable in any biotope, without leaving microplastics.

AllPHA is a great material for any project which requires a more sustainable approach. With various end-of-life options and an inherent fade-into-nature property allPHA is a truly circular material.

TYPICAL MATERIAL PROPERTIES – 3D Printed				
Physical properties	Unit	Value	Method	
Tensile modulus	MPa	2510	ISO 527	
Yield strength	MPa	26	ISO 527	
Yield strain	%	3,5	ISO 527	
Tensile strength	MPa	26	ISO 527	
Tensile strain at tensile strength	%	3,5	ISO 527	
Tensile stress at break	MPa	24	ISO 527	
Tensile strain at break	%	4,5	ISO 527	
Flexural modulus	MPa	1820	ISO 178	
Flexural strain at standard deflection	MPa	37	ISO 178	
Flexural strength	MPa	41	ISO 178	
Flexural strain at flexural strength	%	6,4	ISO 178	
Flexural stress at break	MPa	-	ISO 178	
Flexural strain at break	%	-	ISO 178	
Charpy unnotched impact strength	kJ/m2	25,4	ISO 179-1/1 eU	
Charpy notched impact strength	kJ/m2	3,4	ISO 179-1/1 eU	
Shore D	Shore D	62	ISO 7619	
HDT	°C	153	ISO 75	

T +31 (0)77 - 4664015 F +31 (0)77 - 3971414 E sales@colorfabb.com I colorfabb.com color Fabb

Date of issue: Version: April 4, 2022 v1.0

FILAMENT SPECIFICATION				
Nominal diameter:	Diameter tolerance	Ovality		
1,75 mm	± 0.1mm	≥ 95%		
2,85 mm	± 0.1mm	≥ 95%		
Netto filament weight	750g			

GUIDELINE FOR PRINT SETTINGS

Nozzle temperature	180 - 200ºC
Bed temperature	Room temperature / not heated
Bed surface / modification	3DLac / Diluted wood glue
Bed adhesion slicer settings	Brim (for small parts brim is not needed)
Cooling	100% fan speed on the 2nd or 3rd layer.
Print speed	30-60 mm/s
Layerheight	0.1mm / 0.27 mm (for 0.4mm nozzle)

Contrary to most 3D printing materials allPHA is best printed on a cold plate, so no active heating is required. A heated plate will induce crystallization, which will lead to warping of the bottom layers.

We advise using 100% cooling starting on the second layer. This helps set the model by slowing down crystallization of the allPHA matrix.

Removal of 3D print

Bigger parts with large flat bottom surface area can adhere quite strong to the substrate, glass / PEI or flexplate. In this case it's adviced to heat-up the plate to 90c and wait 15 minutes for the bottom layers to heat through. The heat induces crystallization which makes it easier for the 3D printed part to release from the plate. With the substrate still hot you need to carefully release the model with a sharp and thin scraper and make your way underneath the model all around.

Smaller parts with less bottom surface will release easier, especially if a brim is not used. You can still use the same technique as described above if the part adheres too much or if it's very delicate.

Disclaimer

The product- and technical information provided in this datasheet is correct to the best of our knowledge. The information given is provided as a guidance for good use, handling and processing and is not to be considered as a quality specification. The information only relates to the specific product and the material properties.

colorFabb B.V. Bremweg 7 5951 DK Belfeld The Netherlands T +31 (0)77 - 4664015 F +31 (0)77 - 3971414 E sales@colorfabb.com I colorfabb.com KvK nr: 53498607 VAT nr: NL850902770B01 IBAN: NL54RABO0151849188 BIC: RABONL2U